Changes in P2X receptor responses of sensory neurons from P2X3-deficient mice.
نویسندگان
چکیده
Dorsal root ganglion (DRG) neurons respond to ATP with transient, persistent or biphasic inward currents. In contrast, the ATP responses in nodose neurons are persistent. These sustained currents are also heterogeneous, with one component being accounted for by P2X2/3 receptors, and the residual response probably mediated by P2X2 receptors, although the direct evidence for this has been lacking. In the present study, we examined the P2X receptors on DRG and nodose neurons from P2X3-deficient (P2X3-/-) mice, using whole cell voltage-clamp recording and immunohistochemistry. We found that all P2X3-/- DRG neurons lacked rapidly desensitizing response to ATP, and both DRG and nodose neurons from P2X3-null mutant mice no longer responded to alpha,beta-methylene ATP (alphabetameATP). In contrast, ATP evoked persistent inward current in 12% of DRG neurons and 84% of nodose neurons from P2X3-/- mice. This retained persistent response to ATP on nodose neurons had an EC50 for ATP of 77 microm, was antagonized by Cibacron blue and pyridoxal-5-phosphate-6-azophenyl-2',4'-disulphonic acid, potentiated by Zn2+ and acidification, but not enhanced by ivermectin or diinosine pentaphosphate. 2',3'-O-Trinitrophenyl-ATP antagonized this response with an IC50 of 8 microm. All these properties are consistent with those of recombinant P2X2 homomeric receptors. Furthermore, specific P2X2 receptor immunoreactivity detected in wild-type sensory neurons was unaltered in null mutant mice. Therefore, the alphabetameATP-insensitive persistent responses on nodose neurons are likely to be mediated by P2X2 homomers, which contribute to 60% of currents evoked by 100 microm ATP in the wild type.
منابع مشابه
Comparative Analysis of P2X1, P2X2, P2X3, and P2X4 Receptor Subunits in Rat Nodose Ganglion Neurons
Nodose ganglion (NG) neurons are visceral primary sensory neurons. The transmission and regulation of visceral sensation is mediated mainly by the P2X purinoceptor (P2X receptor). Although the characteristics of different P2X receptor subunits in the NG have been studied previously, comprehensive analyses have not been performed. In this study, we used immunohistochemistry, immunocytochemistry,...
متن کاملPii: S0301-0082(01)00005-3
P2X receptors are a family of ligand-gated ion channels, activated by extracellular ATP. The seven subunits cloned (P2X1–7) can assemble to form homomeric and heteromeric receptors. Peripheral neurons of neural crest origin (e.g. those in dorsal root, trigeminal, sympathetic and enteric ganglia) and placodal origin (e.g. those in nodose and petrosal ganglia) express mRNAs for multiple P2X subun...
متن کاملCa2+/calmodulin-dependent protein kinase II potentiates ATP responses by promoting trafficking of P2X receptors.
To elucidate the functional link between Ca(2+)/calmodulin protein kinase II (CaMKII) and P2X receptor activation, we studied the effects of electrical stimulation, such as occurs in injurious conditions, on P2X receptor-mediated ATP responses in primary sensory dorsal root ganglion neurons. We found that endogenously active CaMKII up-regulates basal P2X3 receptor activity in dorsal root gangli...
متن کاملPeripheral inflammation sensitizes P2X receptor-mediated responses in rat dorsal root ganglion neurons.
ATP-gated P2X receptors in nociceptive sensory neurons participate in transmission of pain signals from the periphery to the spinal cord. To determine the role of P2X receptors under injurious conditions, we examined ATP-evoked responses in dorsal root ganglion (DRG) neurons isolated from rats with peripheral inflammation, induced by injections of complete Freund's adjuvant (CFA) into the hindp...
متن کاملP2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP.
Extracellular ATP plays a role in nociceptive signalling and sensory regulation of visceral function through ionotropic receptors variably composed of P2X2 and P2X3 subunits. P2X2 and P2X3 subunits can form homomultimeric P2X2, homomultimeric P2X3, or heteromultimeric P2X2/3 receptors. However, the relative contribution of these receptor subtypes to afferent functions of ATP in vivo is poorly u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 14 11 شماره
صفحات -
تاریخ انتشار 2001